

CP-VTON+: Clothing Shape and Texture Preserving Image-Based Virtual Try-On

Matiur Rahman Minar¹, Thai Thanh Tuan¹, Heejune Ahn¹, Paul Rosin², Yu-Kun Lai² ¹SeoulTech, ROK, ²Cardiff University, UK

CVPRW 2020 3rd Workshop on Computer Vision for Fashion, Art and Design

Virtual try on

- Retain body shape and pose
- Reserve characteristics of target clothes
- Eliminate old clothes and replace with target clothes
- Retain non-relevant clothes

VITON

- Coarse-to-fine approach, using two-stage network
- Generator Stage
 - encoder-decoder generator
 - coarse synthesized image result l'
- Refinement Stage
 - generate warped image c' using TPS
 - refine using c' and l'

VITON

- Coarse-to-fine approach, using two-stage network
- Generator Stage
 - encoder-decoder generator
 - coarse synthesized image result l'
- Refinement Stage
 - generate warped image c' using TPS
 - refine using c' and l'

VITON

- Coarse-to-fine approach, using two-stage network
- Problem
 - Warping is vulnerable to mask, blurry in rich details

rich textures

CP-VTON

- Preserving the characteristics of clothes
- Geometric Matching Module (GMM)
 - estimating transformation parameters (TPS)
 - generate warped image ĉ
- Try-On Module (TOM)
 - A network to estimate M and coarse person image
 - generate final try on image Ir
 - fuse M, Ir and ĉ

Clothing Warping Stage: Adding skin label

- Neck and bare chest area \rightarrow wrongly labeled as background
- Improvement:
 - Add new label 'skin'

Reference image 6/1/2020

Human parsing From VITON dataset Body shape In CPVTON Update human parsing With skin label

Body shape In CPVTON+

8

Clothing Warping Stage: using of cloth mask

• Colored cloth \rightarrow Cloth mask

 $\theta = f_{\theta}(f_H(H_t), f_C(C_i))$

CP-VTON+

Clothing Warping Stage: TPS parameters regularization

 Reveal that warped clothing is often severely distorted. →Add regularization on the TPS parameters.

 $L_{GMM}^{CP_VTON+} = \lambda_1 . L1(C_{warped}, I_{Ct}) + \lambda_{reg} . L_{reg}$

$$L_{reg}(G_x, G_y) = \sum_{i=-1,1} \sum_x \sum_y |G_x(x+i, y) - G_x(x, y)| + \sum_{j=-1,1} \sum_x \sum_y |G_x(x, y+j) - G_x(x, y)|$$

Blending Stage: Retain un-upper clothes area

Reference image

CPVTON head only input CPVTON result

CPVTON+ up-upper clothes area input

CPVTON+

Blending Stage: Supervised ground truth mask

Inshop cloth

CP-VTON warped cloth and composition mask CP-VTON+ warped cloth and composition mask

Blending Stage: improve background color inshop clothes

• TOM could not recognize the white cloth area.

Inshop cloth

CP-VTON warped cloth and composition mask CP-VTON+ warped cloth and composition mask

Experiments and Results

Method	Warped	Blended		
	(IoU)	SSIM	LPIPS	IS (mean \pm std.)
CP-VTON[4]	0.7898	0.7798	0.1397	2.7809 ± 0.0594
CP-VTON+ (w/o GMM		-	_	_
regularization & mask loss)	0.7602	0.8076	0.1263	3.0735 ± 0.0531
CP-VTON+ (w/o GMM				
mask loss)	0.7920	0.8077	0.1231	3.1312 ± 0.0837
CP-VTON+ (Ours)	0.8425	0.8163	0.1144	3.1048 ± 0.1068

Ablation Study

6/1/2020

Discussions

- 2D transformation can not handle strong 3D deformations.
- Better human parsing is crucial for better try on results

Figure 4. Failures of our CP-VTON+

Conclusion

- Proposed a refined image based VTON system, CPVTON+
- Solving issues in previous approaches:
 - Errors in human representation and dataset
 - Network design
 - Loose cost function
- Future work:
 - 3D reconstruction would be use for handle strongly clothing deformations

Project site

- <u>https://minar09.github.io/cpvtonplus/</u>
- <u>https://github.com/minar09/cp-vton-plus</u>

References

- [1] Xintong Han, Zuxuan Wu, Zhe Wu, Ruichi Yu, and Larry S.Davis. Viton: An image-based virtual try-on network. *CVPR*, pages 7543–7552, 2018. 1, 2, 3, 4
- [2] Ignacio Rocco, Relja Arandjelovic, and Josef Sivic. Convolutional neural network architecture for geometric matching. In CVPR, pages 6148–6157, 2017. 2
- [3] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training gans. In *NeurIPS*, pages 2234–2242, 2016. 3, 4
- [4] Bochao Wang, Hongwei Zhang, Xiaodan Liang, Yimin Chen, Liang Lin, and Meng Yang. Toward characteristic-preserving image-based virtual try-on network. In *ECCV*, 2018. 1, 2, 3, 4
- [5] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE TIP*, 13(4):600–612, 2004. 3, 4
- [6] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR, pages 586–595, 2018. 3, 4

6/1/2020